Sergio Caucao Paillán
Académico
Sergio Caucao Paillán
Académico
Título Académico:
Profesor de Educación Media con mención en Matemática y Computación
Grado Académico:
Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática
Producción Científica
Proyectos
(Investigador Responsable). Proyecto DI-UCSC No. FGII 04/2023. Fondo Interno para Fortalecer los Grupos de Investigación e Innovación 2023: Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC²). (October 2023 – October 2024).
(Investigador Responsable). Proyecto FONDECYT Nº 11220393. Concurso de Proyectos Fondecyt de Iniciación en Investigación 2022: Finite Element Methods for Brinkman-Forchheimer and Related Problems. (Marzo 2022 – Marzo 2025).
(Investigador Asociado). Proyecto Basal FB210005 CMM-UChile. Concurso Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia 2021, ANID-Chile. (Noviembre 2021 – Noviembre 2031).
(Investigador Responsable). Programa PAI de Conicyt, Proyecto Nº 77190084. Convocatoria Nacional Subvención a la Instalación en la Academia 2019: “Métodos de Elementos Finitos para Modelos de Interacción Fluido-Estructura Poroelástica y Problemas Afines”. (Enero 2020 – Diciembre 2022).
Publicaciones
Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A three-field mixed finite element method for the convective Brinkman-Forchheimer problem with varying porosity. Journal of Computational and Applied Mathematics, vol 451, Art. Num. 116090, (2024).
Sergio Caucao, Tongtong Li, and Ivan Yotov: An augmented fully-mixed formulation for the quasistatic Navier-Stokes-Biot model. IMA Journal of Numerical Analysis, vol. 44, 2, pp. 1153-1210, (2024).
Sergio Caucao and Johann Esparza: An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, vol 438, Art. Num. 115517, (2024).
Sergio Carrasco, Sergio Caucao, and Gabriel N. Gatica: New mixed finite element methods for the coupled convective Brinkman-Forchheimer and double-diffusion equations. Journal of Scientific Computing, vol. 97, 3, article: 61, (2023).
Sergio Caucao, Gabriel N. Gatica, and Luis F. Gatica: A Banach spaces-based mixed finite element method for the stationary convective Brinkman-Forchheimer problem. Calcolo, vol. 60, 4, article: 51, (2023).
Sergio Caucao, Eligio Colmenares, Gabriel N. Gatica, and Cristian Inzunza: A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Computer and Mathematics with Applications, vol. 145, pp. 65-89, (2023).
Lady Angelo, Jessika Camaño, and Sergio Caucao: A five-field mixed formulation for stationary magnetohydrodynamic flows in porous media. Computer Methods in Applied Mechanics and Engineering, vol. 414, Art. Num. 116158, (2023).
Sergio Caucao and Marco Discacciati: A mixed FEM for the coupled Brinkman-Forchheimer/Darcy problem. Applied Numerical Mathematics, vol. 190, pp. 138-154, (2023).
Sergio Caucao, Gabriel N. Gatica, and Juan P. Ortega: A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium. Computational Geosciences, vol. 27, 2, pp. 289-316, (2023).
Verónica Anaya, Ruben Caraballo, Sergio Caucao, Luis F. Gatica, Ricardo Ruiz-Baier, Ivan Yotov. “A vorticity-based mixed formulation for the unsteady Brinkman-Forchheimer equations”. Computer Methods in Applied Mechanics and Engineering, vol. 404, Art. Num. 115829, (2023).
Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes. “A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations”. Calcolo, vol. 59, 4, article: 45, (2022).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, Paulo Zúñiga. “A posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations”. Journal of Scientific Computing, vol. 93, 2, article:50, (2022).
Sergio Caucao, Tongtong Li, Ivan Yotov. “A multipoint stress-flux mixed finite element method for the Stokes-Biot model”. Numerische Mathematik, vol. 152, pp. 411-473, (2022).
Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes, Ivan Yotov. “A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations”. Computer Methods in Applied Mechanics and Engineering, vol. 394, Art. Num. 114895, (2022).
Jessika Camaño, Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes. “A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem”. Applied Numerical Mathematics, vol. 176, pp. 134-158, (2022).
Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica, Alejandro A. Hopper. “A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem”. Calcolo, vol. 59, 1, article: 6, (2022).
Sergio Caucao, Gabriel N. Gatica, Juan P. Ortega. “A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations”. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 6, pp. 2725-2758, (2021).
Sergio Caucao, Ivan Yotov. “A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations”. IMA Journal of Numerical Analysis, vol. 41, 4, pp. 2708-2743, (2021).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, Felipe Sandoval. “Residual-based a posteriori error analysis for the coupling of the Navier-Stokes and Darcy-Forchheimer equations”. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 2, pp. 659-687, (2021).
Sergio Caucao, Gabriel N. Gatica, Felipe Sandoval. “A fully-mixed finite element method for the coupling of the Navier-Stokes and Darcy-Forchheimer equations”. Numerical Methods for Partial Differential Equations, vol. 37, 3, pp. 2550-2587, (2021).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, Nestor Sánchez. “A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations”. Journal of Scientific Computing, vol. 85, 2, article:44, (2020).
Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes. “A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy”. Calcolo, vol. 57, article:36, (2020).
Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica, Alejandro A. Hopper. “A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem”. Computer Methods in Applied Mechanics and Engineering, vol. 371, Art. Num. 113285, (2020).
Sergio Caucao, Marco Discacciati, Gabriel N. Gatica, Ricardo Oyarzúa. “A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem”. ESAIM Mathematical Modelling and Numerical Analysis, vol. 54, 5, pp. 1689-1723, (2020).
S. Caucao, Gabriel N. Gatica, Ricardo Oyarzúa. “A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd-Stokes problem”. Numerical Methods for Partial Differential Equations, vol. 35, 1, pp. 295-324, (2019).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa. “Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations”. ESAIM Mathematical Modelling and Numerical Analysis, vol. 52, 5, pp. 1947-1980, (2018).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, Ivana Šebestová. “A fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity”. Journal of Numerical Mathematics, vol. 25, 2, pp. 55-88, (2017).
Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa. “A posteriori error analysis of a fully-mixed formulation for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity”. Computer Methods in Applied Mechanics and Engineering, vol. 315, pp. 943-971, (2017).
Sergio Caucao, David Mora, Ricardo Oyarzúa. “A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density”. IMA Journal of Numerical Analysis, vol. 36, 2, pp. 947-983, (2016).
Cursos que dicta
Pregrado
- Cálculo III
- Cálculo Numérico
- Ecuaciones Diferenciales Ordinarias
Postgrado
- Teoría de Operadores Lineales
- Aspectos Computacionales del Método de Elementos Finitos
- Tópicos de Análisis de Error A-posteriori.
- Cálculo Científico
Estudios
Grados académicos
- Magíster en Matemática con mención en Matemática Aplicada, Universidad del Bío-Bío
- Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción, Chile
Título profesional
- Profesor de Educación Media con mención en Matemática y Computación, Universidad de los Lagos.